Навигация по сайтуНавигация по сайту

Источники диоксинов

Источники возникновения диоксинов и пути проникновения их в живую и неживую природу весьма разнообразны.

1. Известны попытки объяснить картину появления диоксинов в биосфере лишь лесными и степными пожарами. Это оказалось выраженным упрощением, хотя идея сама по себе не беспочвенна. Загрязнение происходит лишь при условии, что растительность была обработана хлорфенольными пестицидами, а возникший пожар преобразует их в диоксинподобные соединения. Серьёзных доказательств накопления каких-либо количеств диоксинов при пожарах на необработанных территориях не найдено. Не обнаружено и доказательств биогенного образования диоксинов или их предшественников непосредственно в живой природе. Таким образом, подтвердилась теория их исключительно антропогенного происхождения. Появление диоксинов в окружающей среде обусловлено развитием разнообразных технологий и в основном связано с производством и использованием хлорорганических соединений и утилизацией их отходов.

Для образования диоксинов необходимо сочетание трех условий: органика, хлор и высокая температура. Серьезной проблемой являются практически все термические процессы, так как термическое разложение технических продуктов, сжигание осадков сточных вод, муниципальных и других небезопасных при сгорании промышленных и бытовых отходов (например, ПХБ и изделия из ПВХ, целлюлозно-бумажная продукция и пластические массы) сопровождаются образованием экологически опасных количеств диоксинов. В особенности это касается аварийной обстановки, в частности, при пожарах на производстве. В результате термодеструкции синтетических материалов при пожарах возможны массовые острые и хронические отравления людей различными выделяющимися ксенобиотиками.

Возможно немало экологически опасных путей образования диоксинов, фактически реализующихся как при производстве продукции, так и при ее утилизации. Следует отметить, что сжигание на своем дачном участке или в лесу пластмассовых бутылок, канистр, пакетов из-под сока или молока, старой мебели, пропитанной пентахлорфенолом, тоже "вносит свою лепту" в загрязнение окружающей среды диоксинами. Кроме того, при сжигании образуются и другие небезопасные соединения. Так, термическое уничтожение одноразовой посуды, пищевой пленки, углеводородных пластиков (пакеты и пр.) влечет за собой образование канцерогенных полиароматических углеводородов (ПАУ); резины - помимо ПАУ, канцерогенно опасную сажу с окислами серы; поролон, нейлон, синтетические ткани и покрытия, полиуретаны - цианиды; горение линолеума (в особенности, антистатического), изоляционных материалов, пластмассовых игрушек, полиэтиленовой тепличной пленки дает в общей сложности до 70 наименований токсических веществ, самые неблагоприятные из которых - диоксины. В целом, сжигание любых ПВХ-композиций влечёт за собой выделение большого числа диоксинов.

Есть эти вещества в выбросах металлургической и металлобрабатывающей промышленности, в пыли, уносимой ветром с могильников токсичных отходов, выхлопных газах автомобильных двигателей.

Существует классификация способов поступления диоксинов в биосферу. Согласно ей, выделяют три основные группы способов:

  • 1. функционирование несовершенных, экологически небезопасных технологий производства продукции химической, целюллозно-бумажной, металлургической промышленности. Для них всех характерны диоксинсодержащие отходы и сточные воды в период регулярной деятельности, а также большие дополнительные выбросы в случае аварийной обстановки;
  • 2. использование химической или иной продукции, содержащей примеси (диоксинов или их предшественников) и/или продуцирующей их в процессе использования или аварии;
  • 3. несовершенство и небезопасность технологии уничтожения, захоронения и преобразования отходов.

Актуальность проблемы вызывает необходимость рассмотреть перечисленные группы более подробно.

1 группа. Опасные производства:

1). Металлургическая промышленность. Диоксины образуются на металлургических заводах, в сталелитейных производствах, при переплаве лома железа, меди и других металлов, при производстве алюминия и т.д. Их находят повсюду - в аквафауне, донных отложениях, а также в сточных водах этих производств, и почве окружающих территорий, в воздушном бассейне и т.д.

2). Целлюлозно-бумажное производство. Исследования показали, что диоксины действительно присутствуют по всей технологической цепи целлюлозно-бумажной промышленности. Диоксины находят также в готовой древесной продукции и бумаге, причем не в газетной, а именно в "белой". Наконец, повышенные концентрации диоксинов обнаружены в организмах рыб, крабов и других представителей аквафауны, обитающих вблизи стоков предприятий.

Одним из особо опасных источников поражения людей и заражения биосферы диоксинами являются различного рода технологические инциденты в промышленности, происходящие при изготовлении продукции, в том числе нередкие аварии и взрывы.

На предприятиях химической промышленности микропримеси диоксинов являются в той или иной степени неизбежным, хотя и попутным элементом технологической цепи, надежно изолированным от контакта с персоналом цехов. Однако, в момент аварии или катастрофы эти вещества могут выйти из-под контроля и привести к массовому поражению работников. В остальное время в процессе изготовления продукции диоксины оказывают сравнительно малое воздействие на персонал и потому становятся фактором влияния на здоровье людей лишь по выходе из технологической цепи - в момент использования и утилизации продукции.

2 группа. Использование химической и иной продукции, содержащей примеси диоксинов

1). Хлорорганические соединения

Хлорорганические соединения находят в ежедневной практике цивилизации широчайшее применение. В частности, обезжиривание металлов, активно применяемое в промышленности, осуществляется с помощью трихлорэтилена в щелочных условиях при повышенных температурах.

Другой путь использования хлорорганических веществ в качестве растворителей - это "сухая" чистка тканей на текстильных фабриках и одежды на пунктах химчистки, выполняемая с помощью трихлорэтилена. Еще один путь - это образование диоксинов непосредственно при производстве красителей в среде высококипящих растворителей.

Диоксины возникают при создании маскирующих дымов в армии. Как оказалось, при дымообразовании создаются условия, благоприятные для возникновения диоксинов.

2). Бумага

Среди продукции, используемой в быту, бумага относится к той, что является не источником, а лишь носителем диоксинов. Диоксины найдены в фильтровальной (в том числе в фильтрах для кофе и чая) и упаковочной бумаге, бумажных салфетках, детских пеленках, косметических тканях и т.д. Особенно высоко их содержание в бумаге, изготавливаемой из вторсырья

Бытовое использование бумаги неизбежно сопровождается переходом диоксинов непосредственно в пищу (кофе, молоко, жиры, чай и т.д.), а затем в организм. Особенно опасно применение диоксин-содержащей бумаги в детских пеленках, гигиенических тампонах, носовых платках и т.д., поскольку кожные покровы и слизистые ткани эффективно извлекают из нее диоксины.

3). Энергоносители

Выхлопные газы автомобилей - пример использования топлива, сопровождающегося возникновением в процессе сгорания диффузного источника диоксинов.. Появление диоксинов в данном случае связано с тем, что повышение октанового числа бензинов, обычно достигаемое за счет введения в них токсических тетраэтил- и тетраметилсвинца, одновременно требует соответствующего технологического противоядия. В этом качестве вводятся броморганические присадки (уловители копоти). В тех условиях, которые возникают в процессе сгорания топлива, последние, обеспечивая решение прямой задачи, одновременно оказываются предшественниками ряда весьма токсичных веществ, в том числе многочисленных диоксинов.

В действительности по вине автотранспорта могут быть созданы очаги сильного заражения диоксинами автострад и прилежащих к ним районов, например, плохо проветриваемых автомобильных тоннелей, почвы вдоль автострад с интенсивным движением и т. д.

4). Антипирены

Броморганические соединения - бромфенолы, ПББ, дифениловые эфиры и т.д. широко используются в качестве ингибиторов горения, которыми пропитывают текстильные, полимерные и иные материалы. Некоторые броморганические соединения используются также в качестве средств пожаротушения.

5). Питьевая вода

Вода как продукт, который особенно широко используется людьми для самых различных целей, также может быть подвержена загрязнению диоксинами. Сложность вопроса состоит, однако, в многообразии источников подобных загрязнений. Они могут быть как естественными, так и техногенными, однако чаще всего комбинированными. Это серьезно затрудняет борьбу с диоксиновыми загрязнениями вод.

Еще в 1980 г. указывалось, что серьезным источником новообразования диоксинов в водопроводных коммуникациях может стать процесс обеззараживания питьевой воды путем обработки ее молекулярным хлором. Тогда же было показано, как в процессе хлорирования питьевой поды образуются соединения, способные трансформироваться в диоксиновые. Образование хлорфенолов при хлорировании воды, содержащей органические примеси, может фиксироваться и органолептически, поскольку хлорфенолы обладают характерным неприятным запахом. Это явление хорошо известно в нашей стране, где хлорирование является стандартной процедурой водоподготовки, а измерение содержания хлорфенолов техническими средствами выполняется чрезвычайно редко. Косвенно, однако, оно отражено и в ГОСТе на питьевую воду: ПДК фенола в нехлорируемой воде составляет 0,1 мг/л, а в хлорируемой - 0,001 мг/л.

Таким образом, молекулярный хлор как первопричина заражения питьевой воды диоксинами - довольно распространенный диффузный источник этих токсикантов. Это явление нехарактерно лишь для тех стран, где обеззараживание осуществляют путем обработки воды озоном или ультрафиолетовым облучением или же хлорирование питьевой воды производят лишь в чрезвычайных ситуациях при возникновении реальной опасности эпидемии. Там же, где обеззараживание питьевой воды молекулярным хлором является одним из ключевых элементов противоэпидемической подготовки, возникновение диоксинов неизбежно.

Опасность для жителей резко усиливается в тех населенных пунктах, где, помимо природных, существуют техногенные источники фенолов. Речь идет о многочисленных городах, где проникновение в водные источники фенольных соединений, регулярно сбрасываемых промышленными предприятиями, стало постоянно действующим фактором экологической обстановки. Подобные предприятия расположены в городах, находящихся на берегах основных рек страны, поскольку все они (Волга, Амур, Енисей. Обь, Лена, Дон, Кубань, Печора и т.д.) загрязнены фенолами.

3 группа. Уничтожение, захоронение и преобразование отходов

Опыт последних десятилетий показал, что промышленные и иные отходы, предназначенные для выведения из оборота цивилизации, также могут отказаться чрезвычайно опасными для человека и природы, в особенности те, что содержат диоксины или их предшественники. Опасность возникает не только на этапе сжигания, но и на этапах захоронения и складирования. Наконец, не менее опасными могут оказаться попытки частичной или полной утилизации отходов.

Из практики последних 10-15 лет следует, что отходы особенно опасны в тех ситуациях, когда вопрос о "судьбе" переносимых ими или порождаемых диоксинов предварительно не рассматривается. Случаи такого рода не были редки в прошлые годы, сохранились они и в наши дни.

1). Термическое уничтожение отходов

Термические технологии - это и стабильный, и очень мощный источник поступления диоксинов в живую и неживую природу.

В настоящее время проблема загрязнения окружающей среды диоксинами из-за их генерации в печах для сжигания бытовых и технических отходов осознана во всех промышленно развитых странах. Подготовлены подробные обобщающие документы на эту тему национальными и международными официальными органами.

Известно например, что с каждым миллионом тонн сжигаемого городского мусора образуется примерно 34 тыс. т летучей золы с сопутствующей ей смесью диоксинов, причем 95-99% этого количества осаждается на электростатических фильтрах и оказывается на свалках, а остальные вместе с газами попадают в атмосферу.

В ряде случаев размеры выбросов диоксинов и способы захоронения диоксинсодержащих отходов плохо известны или вообще неизвестны, а их существование становится очевидным, скорее, по последствиям, относящимся к здоровью населения и состоянию окружающей среды.

2). Циркуляция и распределение диоксинов в живой и неживой природе

Способность к пространственному перемещению воздушным путем у диоксинов и диоксиноподобных соединений незначительна. Однако, концентрация диоксинов в воздухе намного выше тех, которые следовало ожидать, исходя лишь из летучести этих веществ. Диоксины достаточно прочно связываются частицами почвы, донных отложений как содержащими органические компоненты. Почва и донные отложения рек, озер и морей - конечные "резервуары", в которых накапливаются диоксины в природе. В то же время, вместе с этими частицами они могут переноситься на довольно большие расстояния, загрязняя воздух и воду, включаться в пищевые цепи. Эффективнее всех концентрируют диоксины рыбы и дойные коровы. Следовательно, именно продукты животного происхождения страдают при загрязнении окружающей среды диоксинами.

Диоксины черезвычайно стабильны в живых организмах, следствием чего является их длительное сохранение в биосфере.

Токсикокинетические исследования последних лет показали, что они очень медленно выводятся из живых организмов, а из человеческого организма практически не выводятся. В частности, период полувыведения высокотоксичного 2,3,7,8-ТХДД из живых организмов составляет (в днях):

мышь, хомячок

15

крыса

30

морская свинка

30 - 95

обезьяна

455

человек

2150 (4-5 лет)

Высокохлорированные ПХДД имеют сопоставимое время полувыведения из организма человека - порядка 3-6 лет. Для высокотоксичных ПХДФ период полувыведения из организма человека несколько меньше - от 1 до 3 лет. Найдена явная зависимость этой величины от структуры ПХДФ. Период полувыведения высокотоксичного ПХБ-169 из человека имеет величину порядка 10 лет.

При поступлении диоксина в организм человека с пищей более 87% его всасывается в желудочно-кишечный тракт. Накапливается он преимущественно в жировой ткани, коже и печени. Ниже приведены данные по эффективности накопления диоксина в органах, тканях и выделениях человека в сравнении с кровью (даны коэффициенты распределения):

жировая ткань

300

кожа

30

печень

25

грудное молоко

13

стенки кишечника

10

органы с интенсивным кровообращением

(мозг, селезенка, щитовидная железа)

10

почки

7

мышцы

4

кровь

1

фекалии

0,6

желчь

0,5

плацента и кровь плода

0,1

моча

0,00005

Помимо способности накапливаться в неживой природе и живых организмах, диоксины, как уже отмечалось, обладают удивительной химической устойчивостью. Они стабильны и в сильнокислых, и в щелочных средах, устойчивы к окислению. Период полураспада в почве для них составляет порядка 10 лет. В воде и донных отложениях он составляет намного меньшую величину - порядка 2 лет. В воздухе в газообразном состоянии диоксины могут разлагаться под действием ультрафиолетового излучения Солнца, но в таком состоянии в природе диоксины практически не встречаются. Абсорбированные твердыми частицами диоксины гораздо стабильнее: частицы могут содержать соединения, ингибирующие фотолиз или попросту экранирующие диоксины. В почве же фотолиз протекает лишь в верхнем слое (толщиной всего около 3 мм) с периодом полуразложения больше 1 года, но ниже этого слоя концентрация диоксинов остается практически неизменной.

Опубликовано: 03.03.2008 в 16:59

Комментарии

Комментарии отсутствуют

Выберите себе хорошего специалиста!

Понравилось? Поделитесь с друзьями или разместите у себя: